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Abstract
It is well accepted that the virtual crystal approximation provides an effective
method for studying solid solutions and alloys from first principles. Here we
propose another approach based on a well designed averaging of the pseudo-
wavefunctions. As from physical and numerical considerations there is a
subtle arbitrariness in constructing the Kleinman–Bylander pseudopotential,
we can construct the orthonormalized pseudo-wavefunctions as well as
pseudopotentials of the virtual atom by averaging. It is proved that this
extended averaging approach can provide reasonable properties for heterovalent
solid solutions, and has the advantage of great simplicity. Our results for the
perovskite ferroelectrics (1 − x)BiScO3–xPbTiO3 satisfy Vegard’s law well as
regards the cubic lattice constants and display improved values as regards the
structural and electrical properties compared with a previous work (Íñiguez et al
2003 Phys. Rev. B 67 224107).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The material properties of solid solutions and alloys have been widely studied both
experimentally and theoretically throughout materials science. In particular, ferroelectric
ceramics correspond to a typical materials class for which most of the realistic applications
are implemented with solid solutions. For treating such materials systems within first-
principles methods, there exist two approaches: the supercell (SC) method and the virtual
crystal approximation (VCA) method. Firstly, it is necessary to mention the advantages and

0953-8984/07/306203+13$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/30/306203
mailto:yucj@ghi.rwth-aachen.de
http://stacks.iop.org/JPhysCM/19/306203


J. Phys.: Condens. Matter 19 (2007) 306203 C-J Yu and H Emmerich

shortcomings of both methods. The former can give more correct results but require more
computational resources compared with the latter. The issue of correctness is related to the
fact that the SC method can describe the local interaction between two atoms which consist
of virtual atoms but the VCA method cannot do that. It is clear that the effectiveness of the
calculation is connected with the fact that the supercell may contain many unit cells unlike the
primitive unit cell of the VCA method. In the year 2000, several modern VCA approaches were
developed with their own advantages and shortcomings. Here mainly two issues are considered:
capability for treating the heterovalent atoms and accuracy of the calculation.

Let us consider such approaches simply. The simplest VCA approach will be the simple
mixing of the pseudopotentials [1, 2]. In practice, this is performed through the averaging
of the matrix elements in reciprocal space (Fourier momentum space). The advantage is the
simplicity but it is not sufficiently accurate in some cases. The reason for the incorrectness
is the mixing of only the potentials. Ramer and Rappe [1] developed a more accurate
VCA approach through performing the averaging at the level of atomic calculation, where
the averagings of eigenvalues of valence orbitals, Coulomb nuclear potentials, core charge
densities and wavefunctions are performed. The shortcoming of this method is not being
applicable for treating heterovalent atoms; the method only creates the pseudopotential
of the virtual atom composed of homovalent atoms. The weighted averaging method of
Bellaiche and Vanderbilt [3] provides further capability for realizing an effective VCA
approach. Its advantages are providing the ability to treat the heterovalent system and
generality for application to all kinds of first-principles pseudopotentials. However, this method
can be considered also as a kind of simple mixing of pseudopotentials in the case of the
norm-conserving types, though the additional averaging process (with respect to a kind of
wavefunction, Q(r)), is performed in the case of the ultrasoft pseudopotential. Therefore, the
resulting values in the case of complex heterovalent systems [17] show small deviation from
the SC and the experimental values.

Through the simple explanation of the previous VCA approaches we can find that the
accuracy of the calculation improves according to the level of averaging: more averaging can
provide more reasonable results. Here it is necessary to carefully consider the procedure
of constructing the Kleinman–Bylander (KB) [4, 5] nonlocal separable pseudopotential, in
the form of which the pseudopotentials [6–11] are generally used. Transformation from the
semi-local into the KB nonlocal pseudopotential is performed by adopting angular momentum
dependent nonlocal projectors, which in principle may be an arbitrary complete set of
functions. Usually the pseudo-wavefunctions of isolated pseudo-atoms are used as such a set
of functions [12–14]. To avoid the problem of ghost states and to improve the transferability,
a multiple-projector formalism has been developed [15, 16]. In this context it is essential to
realize that an arbitrary set of functions can be used for constructing a KB pseudopotential,
except for the condition that the set is complete and orthonormalized.

On the basis of the above consideration we propose an approach where the pseudo-
wavefunctions as well as the ionic pseudopotential of pseudo-atoms are averaged, imposing
the norm-conserving condition of the averaged wavefunctions. We demonstrate that this
approach allows us to solve the previously encountered difficulty in treating heterovalent atoms
in the Ramer and Rappe approach with reasonable results. And also this approach has the
advantage that it is very simple to apply. Since our new method extends the simple approach
of averaging for only potentials to the averaging for both potentials and wavefunctions, we
call it the ‘Yu–Emmerich extended averaging approach’, for short YE2A2. We test the validity
of the YE2A2 via an application to the structural, electronic, electrical and elastic properties of
(1−x)BiScO3–xPbTiO3 (BS–PT) investigated in previous work [17] by means of the weighted
averaging VCA.
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We organize our paper as follows. In section 2, the main formalism of our new approach
is given. Section 3 shows the results of its application to BS–PT. Finally, we summarize our
results in section 4.

2. Main formalism

The first step consists in performing all-electron calculations for the isolated atoms. From this
one obtains the all-electron potential, wavefunctions and eigenvalues, which are required for
constructing the norm-conserving pseudopotential. Afterwards the pseudo-wavefunctions and
the semi-local pseudopotentials are generated from the all-electron quantities.

The next step is the averaging of the descreened angular momentum (l) dependent ionic
pseudopotentials,

V ion,VA
l (r) = xV ion,A

l (r)+ (1 − x)V ion,B
l (r), (1)

where V ion,A
l (r), V ion,B

l (r) and V ion,VA
l (r) are l components of the ionic pseudopotentials of

atom A, atom B and the virtual atom Ax B1−x , respectively [1, 2].
When these ionic pseudopotentials are used in calculations of polyatomic systems such

as solids and molecules, they are transformed into sums of an l independent local part and l
dependent nonlocal parts. In the semi-local formalism, the pseudopotential operator is written
as follows:

̂V PP = V loc(r)+
∑

l

�V nl
l (r)̂Pl , (2)

where V loc(r) is a local pseudopotential, �V nl
l (r) = V ion

l (r) − V loc(r) are nonlocal
pseudopotentials and ̂Pl are projection operators, which pick out the lth component from the
subsequent wavefunction. The pseudopotential operator ̂V PP is a semi-local operator in the
sense that it is local with respect to the radial coordinate r , but nonlocal with respect to the
angular coordinates r̂.

In the KB formalism, the pseudopotential operator can be written in a fully nonlocal
representation as follows:

̂V PP = V loc(r)+
∑

i, j

|αi 〉Bi j〈α j |, (3)

where αi (r) are suitably chosen projection functions which are strictly localized within the
core cut-off radius and B is the real matrix. We show the detailed transformation of the semi-
local pseudopotential into the fully nonlocal pseudopotential in the appendix3. Kleinman and
Bylander proposed that the pseudo-wavefunctions, ψ0

lm(r) = R0
l (r)Ylm(r̂), where R0

l (r) are
radial wavefunctions and Ylm(r̂) are spherical harmonics, can be used as a set of appropriate
projection functions [4, 5], i.e.

̂V PP = V loc(r)+
∑

lm

|�Vlψ
0
lm〉〈ψ0

lm�Vl|
〈ψ0

lm |�Vl |ψ0
lm〉 . (4)

At this point it is essential to understand that this expression for the projection functions
remains an approximation, since ̂V PPψ0

lm = V PPψ0
lm is valid for an isolated atom, but usually

̂V PPψ � V PPψ for a polyatomic system4. However, the effect of this difference on the pseudo-
wavefunctions can be assumed to be just a perturbation, so that the approximation is certainly
a reliable one.
3 Note that this construction is still fully along the lines of the KB formalism, which only requires the set of projection
functions to be complete, orthonormalized and localized within the core cut-off radius.
4 The reason for this is that the chemical environment of the latter differs from the one in an isolated atom.
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Now equation (4) can be rewritten on the basis of the radial wavefunctions R0
l (r) as

follows [12]:

̂V PP = V loc(r)+
∑

lm

|ψKB
lm 〉EKB

l 〈ψKB
lm |, (5)

where the KB eigenvectors ψKB
lm (r) and KB energy EKB

l are expressed as

ψKB
lm (r) = Ylm(r̂)RKB

l (r) = Ylm(r̂)
�Vl(r)R0

l (r)
[∫ ∞

0 dr r 2|R0
l (r)|2|�Vl(r)|2

]1/2 , (6)

EKB
l =

∫ ∞
0 dr r 2|R0

l (r)|2|�Vl(r)|2
∫ ∞

0 dr r 2|R0
l (r)|2�Vl(r)

. (7)

As shown extensively in the literature, the pseudopotential matrix in momentum space can
be designed such that the construction time and memory cost of the matrix can be reduced
substantially. The matrix elements are then given as follows:

〈K|̂V PP|K′〉 = 4π

�

∑

l

EKB
l Pl(cos(̂KK′))

[∫ ∞

0
dr fK (r)

][∫ ∞

0
dr fK ′(r)

]

(8)

where K = k + G and fK (r) = r 2 jl(Kr)RKB
l (r). Moreover, k is a special point in the

irreducible Brillouin zone, G is a lattice vector in reciprocal space, � is the volume of the unit
cell, ̂KK′ is the angle between wavevectors K and K′, Pl is the lth Legendre polynomial and jl
is the lth spherical Bessel function.

Here we propose that the averaged pseudo-wavefunctions can be used as pseudo-
wavefunctions of the virtual atom, as follows:

R′VA
l (r) = x R0,A

l (r)+ (1 − x)R0,B
l (r). (9)

At this time, since the normalization condition of the wavefunctions is lost, we impose
normalization on them as follows:

RVA
l (r) = R′VA

l (r)
[∫ ∞

0 dr r 2|R′VA
l (r)|2]1/2

. (10)

Then, R0
l (r) in equations (6) and (7) has to be replaced by RVA

l (r). The physical motivation
for this is as follows. Since the Schrödinger equation is nonlinear with respect to the
eigenfunctions, the linear combination of the eigenfunctions (RVA

l ) is not an exact eigenfunction
of the linear combination of the potentials (V VA

l ). However, it is justified to assume the
difference from the exact eigenfunction to be small. Moreover, the exact eigenfunctions of V VA

l
in the environment of an isolated virtual atom are actually no longer accurate ones when the
virtual atom is put into a solid or a molecule. Therefore the linear combination of the pseudo-
wavefunctions taking into account the mixing ratio should fit even better to the polyatomic
environment than the exact eigenfunction of the virtual atom in an isolated environment.

YE2A2 as outlined above has the advantage that it is easy to implement for heterovalent
atoms because it does not require one to solve the Schrödinger equation for the virtual atom.
When applying YE2A2, note that the maximum angular momentum number lmax up to which
the semi-local pseudopotentials are generated must be the same for all component atoms.
Moreover, unbounded states must have the same l, as well. In ab initio calculations of solid
solutions based on YE2A2, the virtual atomic number of the virtual atom has to be averaged as
Z VA = x Z A + (1 − x)Z B, as well.
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Table 1. Cubic lattice constants optimized and fitting into Murnaghan’s state equation, where ‘Ave.’
means averaged value.

Lattice constant (Bohr) Murnaghan

x Calc. Ave. a0 (Bohr) B0 (Mbar) B ′
0

BS 0.00 7.611 7.611 7.615 6.635 5.194
0.75BS–0.25PT 0.25 7.575 7.567 7.563 7.054 5.905
0.5BS–0.5PT 0.50 7.520 7.523 7.517 7.412 4.655
0.25BS–0.75PT 0.75 7.485 7.480 7.484 7.556 4.757
PT 1.00 7.436 7.436 7.441 7.815 4.284

3. Application to BS–PT

The results that we present in this paper concern the electronic, structural, electrical and
elastic properties of the perovskite piezoelectric solid solution bismuth scandinate–lead titanate,
(1−x)BiScO3–xPbTiO3, which has already been investigated by means of both first-principles
studies [17] and experiments [18, 19]. Since it was discovered recently, it has been proved that
BS–PT single crystal near the morphological boundary (MPB) region possesses a significantly
high Curie temperature and good piezoelectric properties. Because there are no applications
to heterovalent systems via the first-principles VCA method except for BS–PT, we verify the
validation of our improved VCA method through comparison with the previous work [17].
Moreover, we display the additional properties of BS–PT which were not mentioned there.

The construction of pseudopotentials is performed by using the Opium package5, which
adopts the optimized norm-conserving pseudopotential with the designed nonlocal potential
approach suggested by Rappe et al [9]. Here two pairs of atoms, Bi–Pb and Sc–Ti, are
considered as the virtual atoms. The Perdew–Zunger formalism [23] for the exchange–
correlation functional within the local density approximation (LDA) is used. As stated in [17],
Bi–Pb and Sc–Ti are pairs of neighbouring atoms in the periodic table and Bi–Sc and Pb–Ti
pairs have the same total nominal ionic charge of 6+, allowing them to be mixed in arbitrary
proportions. The valence electronic configurations of atoms used in this work are as follows:
Bi: 5d10, 6s2, 6p3; Pb: 5d10, 6s2, 6p2; Sc: 3s2, 3p6, 3d1, 4s2; Ti: 3s2, 3p6, 3d2, 4s2; and
O: 2s2, 2p4. The implementation for the crystals is performed by using ABINIT 5.2.4 [24]
with the following parameters: cut-off energy 45 Hartree, Monkhorst–Pack special k-point sets
(4 × 4 × 4) for structural optimization, (6 × 6 × 6) for dynamical calculation and (4 × 4 × 10)
for polarization calculation of the tetragonal phase by the Berry phase method. The structural
relaxation is evolved until the residual force is smaller than 10−6 Hartree Bohr−1.

3.1. Structural properties

Firstly we verify that Vegard’s law with respect to the lattice constants is satisfied well. In the
case of BS, due to the large difference of ionic radii of Bi and Sc, its cubic phase is very unstable
so that the experimental value is not available, since we are not able to compare with the
experimental values. Table 1 shows the results and the fitting into Murnaghan’s state equation.
From table 1, it is found that the lattice constants simulated via optimization satisfy Vegard’s
law within allowable error and the ones obtained by fitting into Murnaghan’s state equation
also agree with the law. Meanwhile the bulk moduli have properly averaged behaviour.

5 Features of the Opium package: atomic structure calculation, generation of norm-conserving-type pseudopotentials
and suitability for use in the ABINIT package via conversion into the fhi format, http://opium.sourceforge.net/index.
html
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Table 2. Lattice parameters of the tetragonal phase obtained by full optimization, where the relaxed
atomic coordinates relative to the A site are shown in units of c. In the case of theoretical work,
BS–PT was considered at x = 0.5.

This work Previous worka Exp.

BS–PT BS–PTa

BS BS–PT PT BS (VCA) (SC) PT PTb (x = 0.64)

a (Bohr) 7.182 7.415 7.373 7.113 7.244 7.293 7.373
c (Bohr) 9.270 8.061 7.806 9.140 8.070 7.650 7.852
d = c/a 1.291 1.087 1.059 1.285 1.114 1.079 1.049 1.065 1.023
z(B) 0.571 0.569 0.540 0.573 0.571 0.535 0.538
z(Ox ,Oy) 0.730 0.672 0.621 0.729 0.682 0.606 0.612
z(Oz) 0.174 0.129 0.102 0.177 0.145 0.094 0.117
�E (eV) −1.725 −0.935 −0.659 −1.124 −0.376 −0.472 −0.060

a Reference [17].
b Reference [21].

Then we get the optimized tetragonal lattice parameters, which include the relaxed atomic
positions, lattice constants a and c or tetragonal ratio d = c/a. The calculated values
are displayed in table 2, where BS–PT is considered at x = 0.5 and �E is the difference
energy relative to the equilibrium cubic phase. In ABO3-type perovskite, the relaxed atomic
coordinates relative to the A site are shown in units of c. Note that the atoms are relaxed in
the direction of the z axis in the tetragonal phase and the ideal cubic perovskite coordinates
are z(B) = 0.5, z(Ox,Oy) = 0.5 and z(Oz) = 0.0. Our tetragonal ratio d (1.087) for BS–PT
(x = 0.5) is rather better than the previous one (1.114), from the fact that the experimental
value is 1.023 for x = 0.64. Moreover our value is very close to the SC one (1.079). The
order of atomic relaxation is similar to the previous results. However the �Es are larger in
magnitude than the previous values. These results suggest that the cubic perovskite structure is
not a very natural one for BS, which is mentioned in the previous work.

3.2. Electronic properties

We calculate the band structure and density of states in the cubic lattice, where the lattice
constants optimized in this work are used. Through the analysis of the band structure and
density of states, we can find the fundamental role of the individual atoms in the structural
instabilities. Such an explanation can be also provided through the valence electronic charge
densities. Figure 1 shows the band structure near the band gaps from � to the X point. Through
figure 1 we can find the proper averaging behaviour of the band structures. However the band
gaps are not well averaged, as the previous works also mentioned. In some works [22], the line
of band gaps in solid solution semiconductors is usually nonlinear with the concentration of the
component. Through the band structures against the concentration, we can verify that the band
structures of solid solutions calculated by using our approach are well averaged in the context
of the overall tendency, except the band gaps.

We then observe the partial densities of states (PDOS), which are shown in figure 2. In the
part under −20 eV, we can find that there are two peaks which originate from the B site atom
3s state and 3p state hybridizing with O 2s and 2p states. These energy of peaks go downward
gradually as the mixing ratio x is increased. This shows that the role of the 3s and 3p electrons
of B site atoms in the ferroelectric instability becomes gradually weaker as the concentration
of PT is increased. In the interval (−25 eV, −5 eV), we find the two different facts that the
band from O 2s is downward and the bands from the A site 6s and 5d states are upward, when

6



J. Phys.: Condens. Matter 19 (2007) 306203 C-J Yu and H Emmerich

X
BS

-10

-5

0

5

10

E
ne

rg
y 

(e
V

)

X
x=0.25

 X
x=0.5

 X
x=0.75

 X
PT

Figure 1. Band structure of the compounds near the band gaps from � to the X point.

the concentration of PT is increased. Consequently we can conclude that the role of 6s and 5d
electrons of A site atoms becomes more important but 2s electrons of oxygen atoms weaken
for the ferroelectric instabilities as the concentration of PT is increased. The most important
part in this analysis is the detailed feature of the band gap region, (−10 eV, 10 eV). In the
case of BS, we can find clearly that the hybridization between Bi 6p and O 2p orbitals plays
a more important role in the ferroelectric instability than the hybridization between Sc 3d and
O 2p orbitals, while in the case of PT the hybridization between Ti 3d and O 2p orbitals plays
the role of instability. In other words, an A site metal atom plays an important role in the
ferroelectric properties for BS, but the B site transition metal atom plays such a role for PT.
Furthermore, we find the proper averaging characteristics between the PDOS of BS and PT in
the solid solution BS–PT (x = 0.5).

In order to search for the change of charge densities as the concentration of PT is increased,
we observe the line density in the directions [001] and [111] (figure 3). We find that the charge
density around the A atoms is gradually decreased, but the charge density around the B atoms
is increased, from BS to PT. This is reflected in the effective charge which is considered in the
following section. The effect of the Bi atom on the chemical bond is stronger than that of the
Pb atom, which was already mentioned in the analysis of band structures.

We emphasize that it is possible to calculate and analyse reasonable electronic properties of
the solid solutions directly, while this is impossible or difficult in the cases of SC and weighted
VCA.

3.3. Physical properties

On the basis of the fully optimized tetragonal lattices, we calculate the spontaneous
polarizations, Born effective charge tensors, elastic tensors and piezoelectric tensors within
modern density functional perturbation theory [25].

7
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Figure 2. Partial DOS of BS (top panel), BS–PT0.5 (middle panel) and PT (bottom panel). In the
middle panel BP and ST mean the pairs Bi–Pb and Sc–Ti.

Figure 3. Electronic charge densities in the [001] and [111] directions of BS (left panel), BS–PT0.5
(middle panel) and PT (right panel).

The electronic part of the polarization can be calculated by the Berry phase method. It is
well known that we can calculate the polarization difference between two states of the same
solid, under the necessary condition that the crystal remains an insulator along the adiabatic
path that transforms the two states into each other. The magnitude of the electronic polarization
of a system in one state is defined only modulo ec/�, where c is the shortest real-space

8
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Figure 4. Polarizations on the adiabatic path.

Table 3. Spontaneous polarization (C m−2).

This work Previous work Exp.

BS 1.251 0.93a —
0.5BS–0.5PT (VCA) 1.074 0.92 (VCA)a 0.32 (x = 0.64)a

1.06(SC)a 0.74 (thin film)b

Average 1.070
PT 0.889 0.82c 0.75c

a Reference [17].
b Reference [18].
c Reference [21].

lattice vector. The electronic polarization difference between two crystal states is expressed
as Pel = Pel(λ2) − Pel(λ1). We calculated the polarizations along the adiabatic path via
which the crystal transforms from the centrosymmetric state (atomic positions are not relaxed)
to the ferroelectric state (atomic positions are relaxed) and estimated the differences between
the centrosymmetric state and the ferroelectric relaxed state. Here the atomic positions of the
intermediate states are estimated, like xλ = x0 + λ(xrelax − x0); 0 < λ < 1), where λ is
an adiabatic path parameter, x0 is the position in the centrosymmetric state and xrelax is the
relaxed position. Here the polarization differences along the adiabatic path should be linear.
The linearity of the polarization differences along the adiabatic path is shown in figure 4. In
figure 4, we also find good averaging behaviour of the BS–PT polarization differences between
BS and PT.

Table 3 shows the spontaneous polarizations of the compounds. Our values for BS (1.251)
and BS–PT (1.074) are larger than those from the previous work (0.93, 0.92) [17] but the
averaging behaviour is good. Since the polarization is strongly dependent on the structure and
our atomic relaxation is rather stronger than Vanderbilt’s one, our larger values were already
expected.

As mentioned previously, the largest contribution to the polarization comes from the
displacement of Bi relative to its neighbouring O ions (Ox and Oy ions). We find that the
relative displacement (0.159) of Bi in our work is a little larger than that from the previous
work (0.146); see table 2. Here we emphasize that the polarization of BS–PT is very well

9
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Table 4. The Born effective charge tensor in the tetragonal phase, where Z∗
xx/Z∗

yy means that
Z∗

xx (Ox ) is replaced with Z∗
yy(Oy) and vice versa.

Z∗
xx/Z∗

yy Z∗
zz

A B Ox Oy Oz A B Ox Oy Oz

BS 5.72 3.26 −2.89 −3.34 −2.75 2.90 4.47 −1.99 −1.99 −3.38
BS–PT (x = 0.5) 4.82 4.73 −4.09 −3.03 −2.43 3.18 5.13 −2.07 −2.07 −4.17
Average 4.78 4.92 −4.21 −3.03 −2.46 3.16 5.03 −2.07 −2.07 −4.06
PT 3.83 6.58 −5.53 −2.72 −2.16 3.42 5.59 −2.14 −2.14 −4.73

BSa 2.90
BS–PT (x = 0.7)a 4.26 5.27 −4.47 −2.77 −2.29
PTb 3.74 6.20 −5.18 −2.61 −2.15 3.52 5.18 −2.16 −2.16 −4.38

a Reference [17].
b Reference [21].

averaged between BS and PT and moreover almost agrees with the SC value (1.06). Generally
the experimental spontaneous polarization is measured for polycrystalline ceramics and the
polarization of polycrystal is smaller than that of single crystal. Therefore it is necessary to
establish a theorem for predicting the spontaneous polarization of the polycrystal from that of
single crystal.

Next we consider the Born effective charge tensor of the compounds in table 4. Firstly we
can confirm that the charge neutrality condition is also satisfied,

∑

m Z∗
αα(m) = 0, indicating

that the calculations are relatively fully converged with respect to computational conditions. We
observe that the averaging of the effective charges is reasonable, especially for the A virtual
atom. Therefore we can say that within the VCA method averaging behaviour of the Born
effective charge occurs. In fact, we can expect such a result from the well averaged polarization
values.

Our results for PT are a little different from the previous ones, because ours were obtained
from the lattice constant (7.43 Bohr) optimized in this work but the latter used the experimental
value (7.50 Bohr). It is useful to consider the effective charges in the perpendicular part
(Zxx , Z yy → Z⊥) and parallel part (Zzz → Z‖) with respect to the Z axis. For Z⊥, it is found
that the deviation from the nominal value is large for Bi (+3 → +5.72) of BS, Ti (+4 →
+6.58) of PT and O⊥ (Ox and Oy) (−2 → −5.53, −3.03, −3.34) of the three compounds.
Meanwhile also Ti (+5.59) of PT but Sc (+3 → +4.47) of BS and O‖(Oz) (−2 → −4.73,
−4.17, −3.38) have large values for Z‖. From the fact that the deviation of the effective charge
from the nominal ionic charge is raised by orbital hybridization (charge transfer) and through
the view of the perpendicular part area where the atomic relaxations were not allowed, we can
find that there exist hybridizations between Bi atom orbitals and O⊥ orbitals and therefore the
Bi atom plays a more important role in ferroelectric instability than the Sc atom in BS, while
in the case of PT, Ti and O⊥ atoms play such role and the Pb atom plays an assisting role. And
through the parallel part, it can be concluded that the role of B site atoms and O‖ increases
when the atomic relaxation is performed.

Then we calculate the elastic tensor for compounds, which is a fourth-rank tensor
originally, but is reduced to a sixth-rank matrix by the Voigt notation. In the perovskite
tetragonal phase (P 4̄mm space group), there are only six independent elements. The elastic
properties of BS–PT can be compared with the experimental values, except C44 which is much
larger than the experimental value (see table 5).

In table 6, the piezoelectric response properties are shown. Here we concentrate on e15

and d15 which measure the change of polarization perpendicular to the z axis induced by
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Table 5. The elastic stiffness tensor for the tetragonal phase (102 GPa).

C11 C12 C13 C33 C44 C66

BS 2.00 0.72 0.77 0.91 0.48 0.67
BS–PT (x = 0.5) 2.47 0.87 0.93 0.92 1.39 0.80
PT 2.68 1.06 0.86 0.87 0.51 0.93

BS–PT (x = 0.57) exp.a 1.26 1.06 0.99 1.00 0.49 0.41
PT exp.b 2.37 0.90 0.70 0.60 0.69 1.04
PT calc.b 1.33 0.85 0.89 0.93 0.80 0.93

a Reference [19].
b Reference [20].

Table 6. The piezoelectric tensor for the tetragonal phase where ‘strain’ means piezoelectric strain
tensor and ‘stress’ means piezoelectric stress tensor.

Strain (C m−2) Stress (pC N−1)

e15 e31 e33 d15 d31 d33

BS 1.64 −0.68 −1.38 34.18 3.43 −20.93
BS–PT (x = 0.5) 13.72 −0.94 −3.05 98.53 15.12 −64.08
PT 5.68 1.61 4.44 111.30 −13.33 77.06

BS–PT (x = 0.57) exp.a 16 −6.6 13.6 330 −550 1150
BS–PT (x = 0.7) calc.b 7.25 168
PT calc.c 5.65 1.87 3.68
PT exp.d 4.4 2.1 5.0 53 −4.4 51

a Reference [19].
b Reference [17].
c Reference [21].
d Reference [20].

shear strain and stress. In our case e15 (13.72 C m−2) is much closer to the experimental
value (16 C m−2) than the previous one (7.25 C m−2) and also d15 is sufficiently large. If
we perform the calculation at MPB (x ≈ 0.67), we think that the result will be even closer
to the experimental value but in this work it is sufficient. Anyway we can conclude that the
piezoelectric response property of BS–PT is good at least as regards the shear strain, compared
with that of PZT (e15 = 7.58 C m−2).

4. Summary and discussion

In this work, we proposed an efficient VCA approach applicable for treating heterovalent
atoms and investigated the overall material properties of perovskite ferroelectrics such as BS,
PT and their solid solution BS–PT. The material properties include the electronic properties
(band structure, partial DOS, and valence electronic charge density), structural properties
(equilibrium cubic lattice constant, tetragonal lattice parameters with the relaxation of the
atomic positions) and physical tensors (Born effective charge tensors, spontaneous polarization,
elastic tensors and piezoelectric tensors). Most of the results are reasonably good as compared
with the previous results and the experimental values.

Vegard’s law was well satisfied as regards the cubic lattice constants. Moreover, our value
of the tetragonal lattice ratio agreed with the value from the supercell method although it was
still far away from the experimental value. Such agreement with the supercell method was
also observed for the spontaneous polarization of the compounds. As regards the electronic
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properties, it is concluded that the behaviour of the solid solution is generally well averaged
from the parent compounds, except for the band gaps. Also the calculated elastic and
piezoelectric tensors are reasonable compared with the experimental values, except for some
elements. As regards the piezoelectric properties, more careful consideration is necessary.

Comparing with the previous results, it is emphasized that we obtain better values for
the tetragonal lattice ratio and the spontaneous polarization, namely, our calculated values are
much closer to the supercell method ones than the previous ones. Moreover our approach can
perform direct calculations and analysis of the electronic properties of the solid solutions, while
with the previous method it is not possible to do that because of the additional ‘ghost’ atoms.
We consider that this approach could be applied to wide ranges of alloys and solid solutions
without any complicated process and with reasonable results.
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Appendix

In this appendix, we show how to transform semi-local pseudopotentials into fully nonlocal
pseudopotentials by using an orthonormalized complete set of projection functions.

The semi-local pseudopotential operator can be written as follows:

̂V semi
nl =

lmax
∑

l=0

l
∑

m=−l

|Ylm〉�Vl(r)〈Ylm | (A.1)

where we do not consider the local parts because they are the same for the semi-local and
nonlocal formalisms. Then, the matrix element in momentum space is as follows:

V semi
nl (K,K′) =

∑

lm

∫ ∞

0
dr r 2〈K|Ylm〉r̂�Vl(r)〈Ylm |K′〉r̂′ (A.2)

where r̂ and r̂′ are the angular coordinates of position vectors r and r′, respectively.
Any orthonormalized and complete basis set,

∑

i

|αi〉〈αi | = 1, 〈αi |α j 〉 = δi j , (A.3)

can be put into (A.2), and then the matrix element can be divided as follows:

V KB
nl (K,K′) =

∑

lm

∫ ∞

0
dr r 2

(

∑

i

〈K|αi 〉〈αi |Ylm〉r̂�Vl(r)
∑

j

〈Ylm |α j 〉r̂′ 〈α j |K′〉
)

=
∑

i j

∑

lm

〈K|αi 〉
[∫ ∞

0
dr r 2αlm

i (r)�Vl(r)α
lm
j (r)

]

〈α j |K′〉

=
∑

i j

∑

lm

〈K|αi 〉�V lm
i j 〈α j |K′〉

=
∑

i j

〈K|αi〉Vi j 〈α j |K′〉 (A.4)

where αi (r) = ∑

lm α
lm
i (r)Ylm(r̂) and �V lm

i j = ∫ ∞
0 dr r 2αlm

i (r)�Vl(r)αlm
j (r).
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